A new twist on glass: A brittle material enabling flexible integrated photonics

نویسندگان

  • Lan Li
  • Hongtao Lin
  • Jerome Michon
  • Yizhong Huang
  • Junying Li
  • Qingyang Du
  • Anupama Yadav
  • Kathleen Richardson
  • Tian Gu
  • Juejun Hu
چکیده

Funding information National Science Foundation, Grant/Award Number: 1453218, 1506605; Department of Energy, Grant/Award Number: DE-NA0002509 Abstract Glass is in general brittle and therefore usually cannot sustain large deformation. Recent advances in glass material development as well as micro-mechanical designs, however, are set to defy the conventional wisdom through the demonstration of flexible integrated photonics that can be bent, twisted, and even stretched without compromising its structural integrity and optical performance. In this paper, we review the latest progress in this emerging field, and discuss the rational material and mechanical engineering principles underlying the extraordinary flexibility of these photonic structures. Leveraging these design strategies, we demonstrated bendable chalcogenide glass waveguide circuits, flexible glass waveguide-integrated nanomembrane photodetectors, and stretchable glass photonics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integrated flexible chalcogenide glass photonic devices

Photonic integration on thin flexible plastic substrates is important for emerging applications ranging from the realization of flexible interconnects to conformal sensors applied to the skin. Such devices are traditionally fabricated using pattern transfer, which is complicated and has limited integration capacity. Here, we report a convenient monolithic approach to realize flexible, integrate...

متن کامل

Chalcogenide Glass Materials for Integrated Infrared Photonics

Chalcogenide glasses (ChGs) are amorphous compounds containing the chalcogen elements (S, Se, Te) and exhibit wide infrared transparency windows. They are easy to synthesize in bulk and thin film forms and their compositional flexibility allows tuning of optical properties such as refractive index making them ideal for infrared photonics. We have studied the material attenuation in ChGs that ar...

متن کامل

Advanced flexible electronics: challenges and opportunities

Thin, lightweight and flexible electronics are being regarded as an important evolutionary step in the development of novel technological products. Interestingly, this trend has emerged in a wide range of industries; from microelectronics to photovoltaics and even solid state lighting. Historically, most attempts to enable flexibility have focused on the introduction of new material systems tha...

متن کامل

Study of azo dye surface command photoalignment material for photonics applications.

We provide detailed quantitative characterization of sulfonic bisazodye SD1 as a photoalignment material for photonics applications. The reversibility of photoalignment was tested for transformations between planar and 90 degrees twist orientation states in a liquid crystal (LC) cell using polarized UV light. No degradation was observed for 100 cycles of transformations. A given twist angle of ...

متن کامل

Roadmap on silicon photonics

Silicon photonics research can be dated back to the 1980s. However, the previous decade has witnessed an explosive growth in the field. Silicon photonics is a disruptive technology that is poised to revolutionize a number of application areas, for example, data centers, high-performance computing and sensing. The key driving force behind silicon photonics is the ability to use CMOSlike fabricat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017